EE 330 Lecture 16

Devices in Semiconductor Processes

- Diodes (continued)
- Capacitors
- MOSFETs

Exam 2 Schedule

Exam 2 will be given on Friday March 11 Exam 3 will be given on Friday April 15

As a courtesy to fellow classmates, TAs, and the instructor

Wearing of masks during lectures and in the laboratories for this course would be appreciated irrespective of vaccination status

Review from Last Lecture

Diode Models

Which model should be used?

The simplest model that will give acceptable results in the analysis of a circuit

Use of <u>Piecewise</u> Models for Nonlinear Devices when Analyzing Electronic Circuits

Process:

- 1. Guess state of the device
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify model (if necessary)

Observations:

- Analysis generally simplified dramatically (particularly if piecewise model is linear)
- Approach applicable to wide variety of nonlinear devices
- \circ $\,$ Closed-form solutions give insight into performance of circuit $\,$
- $\circ~$ Usually much faster than solving the nonlinear circuit directly
- Wrong guesses in the state of the device do not compromise solution (verification will fail)
- \circ Helps to guess right the first time
- $\circ~$ Detailed model is often not necessary with most nonlinear devices
- Particularly useful if piecewise model is PWL (but not necessary)
- o For practical circuits, the simplified approach usually applies

Key Concept For Analyzing Circuits with Nonlinear Devices

A Diode Application

If buffer/amplifier added, serves as temperature sensor at V_{OUT} $V_{OUT} = 2(V_{D1} - V_{D2})$ May need compensation and startup circuits

For appropriate R₀, serves as bandgap voltage reference (buffer/amplifier excluded) $V_{REF} = V_{D1} + \frac{R}{R_0} (V_{D1} - V_{D2})$

A Diode Application

$$V_{OUT} = 2(V_{D1} - V_{D2})$$

Analysis of temperature sensor (assume D_1 and D_2 matched)

$$I_{D2}(T) = \left(J_{sx}\left[T^{m}e^{\frac{-V_{os}}{V_{t}}}\right]\right)Ae^{\frac{V_{os}}{V_{t}}}$$

$$I_{D1}(T) = \left(J_{sx}\left[T^{m}e^{\frac{-V_{os}}{V_{t}}}\right]\right)Ae^{\frac{V_{os}}{V_{t}}}$$

$$I_{D1}(T) = MI_{D2}(T)$$

$$V_{t} = \frac{k}{q}T$$

$$\left(J_{sx}\left[T^{m}e^{\frac{-V_{os}}{V_{t}}}\right]\right)Ae^{\frac{V_{os}}{V_{t}}}$$

$$Cancelling terms and taking ln we obtain
$$V_{D1} - V_{D2} = V_{t} InM$$
Thus
$$V_{OUT} = 2(V_{D1} - V_{D2}) = 2InM \bullet \frac{k}{q}T$$

$$T = V_{OUT} \frac{q}{2k InM}$$$$

May need compensation and startup circuits

If buffer/amplifier added, serves as temperature sensor at V_{OUT}

 $V_{OUT} = 2(V_{D1} - V_{D2}) \qquad \qquad T = V_{OUT} \frac{q}{2k \ln M}$ For appropriate R₀, serves as bandgap voltage reference $V_{REF} = V_{D1} + \frac{R}{R_0}(V_{D1} - V_{D2}) \qquad \qquad \ref{eq:result}$

Analysis of V_{REF} to show output is nearly independent of T and V_{DD} is more tedious

Use of <u>Piecewise</u> Models for Nonlinear Devices when Analyzing Electronic Circuits

What about nonlinear circuits (using piecewise models) with time-varying inputs?

Same process except state verification (step 3) may include a range where solution is valid

Thus valid for $V_{IN} < 0$

Example: Determine V_{OUT} for V_{IN} =80sin500t

Use of <u>Piecewise</u> Models for Nonlinear Devices when Analyzing Electronic Circuits

Process:

- 1. Guess state of the device
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify model (if necessary)

What about circuits (using piecewise models) with multiple nonlinear devices?

Guess state for each device (multiple combinations possible)

Example: Obtain V_{OUT}

Use of <u>Piecewise</u> Models for Nonlinear Devices when Analyzing Electronic Circuits

Single Nonlinear Device

Process:

- 1. Guess state of the device
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify model (if necessary)

Multiple Nonlinear Devices

Process:

- 1. Guess state of each device (may be multiple combinations)
- 2. Analyze circuit
- 3. Verify State
- 4. Repeat steps 1 to 3 if verification fails
- 5. Verify models (if necessary)

Analytical solutions of circuits with multiple nonlinear devices are often impossible to obtain if detailed non-piecewise nonlinear models are used

Diode Breakdown

- Diodes will "break down" if a large reverse bias is applied
- Unless current is limited, reverse breakdown is destructive
- Breakdown is very sharp
- For many signal diodes, V_{BR} is in the -100V to -1000V range
- Relatively easy to design circuits so that with correct diodes, breakdown will not occur
- Zener diodes have a relatively small breakdown and current is intentionally limited to use this breakdown to build voltage references

Types of Diodes

pn junction diodes

Signal or Rectifier Pin or Photo Light Emitting LED Laser Diode

Zener

Varactor or Varicap

Metal-semiconductor junction diodes

Schottky Barrier

Basic Devices and Device Models

- Resistor
- Diode

- MOSFET
- BJT

Capacitors

- Types
 - Parallel Plate
 - Fringe
 - Junction

Parallel Plate Capacitors

$$C = \frac{\in A}{d}$$

Parallel Plate Capacitors

where

A is the area where the two plates are parallel Only a single layer is needed to make fringe capacitors

Fringe Capacitors

Capacitance

 $\begin{array}{c} \Psi_{B} \end{pmatrix} \qquad \qquad \mbox{voltage dep. of C} \\ C_{j0} \mbox{ is the zero-bias junction capacitance density} \\ \mbox{Model parameters } \{C_{j0}, n, \phi_{B}\} \quad \mbox{Design parameters } \{A\} \end{array}$

 $\phi_{\text{B}}\cong 0.6V \qquad n\simeq 0.5 \qquad \text{C}_{\text{jo}} \text{ highly process dependent around 500aF/} \mu\text{m}^2$

Capacitance Junction Capacitor 1.6 1.4 1.2 0.6 0.4 0.2 V_D -2 -3 -4 -1 0 1 $\frac{\mathbf{C}_{jo}\mathbf{A}}{\left(\begin{array}{c} \mathbf{V}_{\mathbf{D}} \end{array}\right)^{n}}$ for $V_{FB} < \frac{\Phi_B}{2}$ **C** = $\boldsymbol{\varphi}_{\mathsf{R}}$ Voltage dependence is substantial

 $\phi_{\scriptscriptstyle B} \cong 0.6V \quad n \simeq 0.5$

Basic Devices and Device Models

- Resistor
- Diode
- Capacitor
- MOSFET
 - BJT

2. Improved switch-level model

1.

Switch closed for $|V_{GS}|$ = large Switch open for $|V_{GS}|$ = small

Improved Switch-Level Model

- Connect the gate capacitance to the source to create lumped model
- Still neglect bulk connection

Limitations of Existing MOSFET Models

Better Model of MOSFET is Needed!

Stay Safe and Stay Healthy !

End of Lecture 16